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Abstract— AMBA (Advanced 

Microcontroller based Bus Architecture) 
consists of AHB, APB, ASB and AXI. In this 
project we are Tracing AHB (Advanced High 
performance Bus) signals with Real time 
Compression and Multiresolution 
Techniques. A simple transaction on the AHB 
consists of an address phase and a subsequent 
data phase. Access to the target device is 
controlled through a MUX , thereby 
admitting bus-access to one bus-master at a 
time. In AHB Tracer we have to Trace 
Address signals, Data signals and Control 
signals the have to compress them depending 
on AHB protocols. A multiresolution AHB 
on-chip bus tracer is named as SYS_HMRBT 
(AHB Multiresolution Bus Tracer) and is 
used monitoring. By using this SYS_HMRBT, 
we can achieve 79%-96% of compression 
depending on selected resolution mode. 

Key words- AHB, AMBA, compression, 
multiresolution, post- T trace, pre-T trace, 
real time trace. 

 
INTRODUCTION 
AHB Tracer 
The ON-CHIP bus is an important 

system-on-chip (SoC) infrastructure that 
connects major hardware components. 
Monitoring the on-chip bus signals is crucial to 
the SoC debugging and performance 
analysis/optimization. 

Unfortunately, such signals are difficult to 
observe since they are deeply embedded in a 
SoC and there are often no sufficient I/O pins to 
access these signals. Therefore, a 
straightforward approach is to embed a bus 

tracer in SoC to capture the bus signal trace and 
store the trace in an on-chip storage such as the 
trace memory which could then be off loaded to 
outside world (the trace analyzer software) for 
analysis. Unfortunately, the size of the bus trace 
grows rapidly. For example, to  capture AMBA 
AHB 2.0 [1] bus signals running at 200 MHz, the 
trace grows at 2 to 3 GB/s. Therefore, it is highly 
desirable to compress the trace on the fly in order 
to reduce the trace size. However, simply 
capturing/compressing bus signals is not 
sufficient for SoC debugging and analysis, since 
the debugging/analysis needs are versatile: some 
designers need all signals at cycle-level, while 
some others only care about the transactions. For 
the latter case, tracing all signals at cycle-level 
wastes a lot of trace memory. Thus, there must 
be a way to capture traces at different abstraction 
levels based on the specific debugging/analysis 
need. 

This paper presents a real-time 
multi-resolution AHB on-chip bus tracer, named 
SYS-HMRBT (aHb multiresolution bus tracer). 
The bus tracer adopts three trace compression 
mechanisms to achieve high trace compression 
ratio. It supports ‘multiresolution tracing’ by 
capturing traces at different timing and signal 
abstraction levels. In addition, it provides the 
‘dynamic mode change’ feature to allow users to 
switch the resolution on-the-fly for different 
portions of the trace to match specific 
debugging/analysis needs. Given a trace 
memory of fixed size, the user can trade off 
between the granularities and trace length to 
make the most use of the trace memory. In 
addition, the bus tracer is capable of tracing 
signals before/after the event triggering, named 
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pre-T/post-T tracing, respectively. This feature 
provides a more flexible tracing to focus on the 
rest of this documentation is organized as 
follows. Chapter2.2 surveys the related work. 
Chapter3 illustrates the literature survey of AHB 
Tracer. Chapter4 presents the hardware 
architecture of our bus tracer. Chapter5 provides 
experiments to analyze the compression ratio, 
trace depth, and cost of our bus tracer. A case 
study is also conducted to integrate the bus tracer 
with a 3-D graphics SoC. Finally, Chapter7 
concludes this project and gives directions for 
future research. 

. 
II VARIOUS CODE TECHNIQUES: 
DUPLEX SYSTEM: 
A duplex framework is an illustration of a 

traditional  excess plan that might be utilized for 
simultaneous lapse location demonstrates the 
fundamental structure of  a duplex framework. 
Duplication has been utilized for simultaneous 
mistake location as a part of various frameworks 
including the Bell Switching System, from 
organizations like Stratus and Sequoia. In any 
duplex framework there are two modules 
(indicated in Fig. 2.1 as Module 1 and Module 2) 
that actualize the same rationale capacity. The 
two executions are not so much the same. A 
comparator is utilized to check whether the 
yields from the two modules concur. On the off 
chance that the yields deviate, the framework 
demonstrates a lapse. For a duplex framework, 
information uprightness is protected the length 
of both modules don't deliver indistinguishable 
blunders (expecting that the comparator is 
shortcoming free). Since the comparator is 
significant to the right operation of the duplex 
framework, extraordinary checking toward 
oneself comparator plans (e.g., two-rail checker) 
that ensure information respectability against 
single comparator flaws must be utilized 

 
Related work 
Since the huge trace size limits the trace depth 

in a trace memory, there are hardware 
approaches to compress the traces. The 
approaches can be divided into lossy and lossless 
trace compression. 

The lossy trace compression approach 
achieves high compression ratio by sacrificing 

the accuracy; the original signals cannot be 
reconstructed from the trace. The purpose of this 
approach is to identify if a problem occurs. Anis 
and Nicolici use the multiple input signature 
register (MISR) to perform lossy compression. 
The results are stored in a trace memory and 
compared with the golden patterns to locate the 
range of the erroneous signals. The locating 
needs rerunning the system several times with 
finer and finer resolution until the size of the 
search range can fit in the trace memory. Such 
approach is suitable for deterministic and 
repeatable system behaviors. However, for a 
complex SoC with multiple independent IPs, the 
on-chip bus activities are usually not 
deterministic and repeatable. Therefore, lossless 
compression approaches are more appropriate 
for realtime on-chip bus tracing. 

Existing on-chip bus tracers mostly adopt 
lossless compression approaches. ARM provides 
the AMBA AHB trace macrocell (HTM) [4] that 
is capable of tracing AHB bus signals, including 
the instruction address, data address, and control 
signals. The instruction address and control 
signals are compressed with a slice compression 
approach (to be explained shortly). On the other 
hand, the data address is recorded by simply 
removing the leading zeros. The HTM supports a 
limited level of trace abstraction by removing 
bus signals that are in IDLE or BUSY state. The 
AMBA navigator [5] traces all AHB bus signals 
without compression. In the bus transfer mode, it 
also has a limited level of trace abstraction by 
removing bus signals  which are in IDLE, 
BUSY, or non-ready state. The AHBTRACE in 
GRLIB IP library [2] captures the AMBA AHB 
signals in the uncompressed form. In addition, it 
does not have trace abstraction ability. 

There are many research works related to the 
bus signal compression. We characterize the bus 
signals into three categories: program address, 
data address/data and control signals. We then 
review appropriate compression techniques for 
each category. For program addresses, since they 
are mostly sequential, a straightforward  way is 
to discard the continuous instruction addresses 
and retain only the discontinuous ones, so called 
branch/target filtering. This approach has been 
used in some commercial tracers, such as the 
TC1775 trace module in TriCore and ARM’s 
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Embedded Trace Macrocell (ETM) [7]. The 
hardware overhead of these works is usually 
small since  the filtering mechanism is simple to 
be implemented in hardware. The effectiveness 
of these techniques, however, is mainly limited 
by the average basic block size, which is roughly 
around four or five instructions per basic block. 
Other technique such as the slice compression 
approach [2] targets at the spatial locality of the 
program address. This approach partitions a 
binary data into several slices and then records 
all the slices of the first data and then only part of 
the slices of the succeeding data that are different 
from the corresponding slices of the previous 
one (usually the lower bit positions of the data). 

For data address/value, the most popular 
method is the differential approach which 
records the difference between consecutive data. 
Since the difference usually could be represented 
with less number of bits than the original value, 
the information size is reduced. Hopkins and 
Mc-Donald–Maier showed that the differential 
method can reduce the data address and the data 
value by about 40% and 14%, respectively. For 
control signals, ARM HTM [4] encodes them 
with the slice compression approach: the control 
signal is recorded only when the value changes. 

 Cycle 
Level 

Transactio 
n Level 

Time 
Granularit y 

Cycle 
Accurat 

e 

Event 
Triggering 

 
Table1 TIMING ABSTRACTION 
 
As mentioned, compressing all signals at the 

cycle- accurate-level does not always meet the 
debugging needs. As SoCs become more 
complex, the transaction-level debugging 
becomes increasingly important, since it helps 
designers focus on the functional behaviors, 
instead of interpreting complex signals. Tabbara 
and Hashmi propose the transaction-level SoC 
modeling and debugging method. The proposed 
transactors, attaching to the on-chip bus, 
recognize/monitor signals and abstract the 
signals into transactions. The transactions, 
bridging the gap between algorithm-level and 
the signal-level, enable easy design 
exploration/debugging/monitoring. 

Motivated by the related works, our bus tracer 

combines abstraction and compression 
techniques in a more aggressive way. The goal is 
to provide better compression quality and 
multiple resolution traces to meet the complex 
SoC debugging needs. For example, our bus 
tracer can provides traces at cycle-level and 
transaction-level to support versatile debugging 
needs. Besides, features such as the dynamic 
mode change and bidirectional traces are also 
introduced to enhance the debugging flexibility. 

 
III IMPLEMENTATION 
Figure1 is the bus tracer overview. It  mainly 

contains four parts: Event Generation Module, 
Abstraction Module, Compression Modules, and 
Packing Module. The Event Generation Module 
controls the start/stop time, the trace mode, and 
the trace depth of traces. This information is sent 
to the following modules. Based on the trace 
mode, the Abstraction Module abstracts the 
signals in both timing dimension and signal 
dimension. The abstracted data are further 
compressed by the Compression Module to 
reduce the data size. Finally, the compressed 
results are packed with proper headers and 
written to the trace memory by the Packing 
Module. 

 
 
Figure1 Multiresolution bus tracer block 

diagram. 
In AHB Tracer we have the following modules 
--Event Generator 
--Abstraction 
--Compression 
--Packing 
In addition to these modules we use Trace 

Memory o save the data which is compressed by 
the  Tracer. And we use CHECKER as a external 
module from where we can trace data other than 
AHB bus. 
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AHB Protocol checker (HP checker) 
Figure2 Protocol Checker 
Figure2 shows AHB Protocol Checker (HP 

Checker) architecture, which contains two main 
function blocks: Protocol Checker, ERROR 
Reference Table .Let us introduce these two 
blocks individually. 

HPChecker is a rule-based protocol checker, 
thus how to establish a set of well-defined rules 
is very important. We reference Synopsys 
verification intellectual property (VIP) to 
establish rules. Besides, according to our design 
experiences, we add new rules to increase our 
error finding ability. In conclusion, our protocol 
checker has rules, including master-related rules, 
slave-related rules, reset-related rules, and bus 
components-related rules. Bus components 
include arbiter and decoder. 

Protocol Checker is the main core of 
HPChecker, the inputs are all AHB bus signals, 
and the outputs are ERROR signals and 
corresponding master and slave IDs. Every rule 
has its own corresponded bit because every cycle 
maybe occur more than one error. If the ith bit of 
ERROR is set, which indicates current bus 
signals violate ith rule. The Master/Slave ID is 
formed by the HMASTER signal. If an error 
occurs, the HPChecker will output the 
corresponded master ID number or slave ID 
number to indicate which master or slave 
violates the AHB protocol. Event Generation 
Module 

The Event Generation Module decides the 
starting and stopping of a trace and its trace 

mode. The module has configurable event 
registers which specify the triggering events on 
the bus and a corresponding matching circuit to 
compare the bus activity with the events 
specified in the event registers. Optionally, this 
module can also accept events from external 
modules. For example, we  can connect an AHB 
bus protocol checker (HPChecker) to the Event 
Generation Module, as shown in Figure4.1, to 
capture the bus protocol related trace. 

Table4.1 is the format of an event register. It 
contains four parameters: the trigger conditions, 
the trace mode, the trace direction, and the trace 
depth. The trigger conditions can be any 
combination of the address value, the data value, 
and the control signal values. Each of the value 
has a mask field for enabling partial match. For 
each  trigger condition, designers can assign a 
desired trace mode, e.g., Mode FC, Mode FT, 
etc., which allows the trace mode to be 
dynamically switched between events. The trace 
direction determines the pre-T/post-T trace. The 
trace depth field specifies the length of trace to 
be captured 

32 bits 
Address 
Address Mask 
Data 
Data Mask 
Control 
Control Mask 
Trace Depth 

Trace Direc Ena  Chec Even 
Mode( tion ble  ker t 
4bits)    Event Num 
   

 
 bers 

     (24 
     bits) 

Event Numbers(21 bits) [10:0] 
zeros 

Table2 Event Register. 
Abstraction Module 
The Abstraction Module monitors the AMBA 

bus and selects/filters signals based on the 
abstraction mode. The bus signals are classified 
into four groups as mentioned below: 

 
Timing and Signal Abstraction Definition 
The abstraction level is in two dimensions: 

timing abstraction and signal abstraction. At the 
timing dimension, it has two abstraction levels, 
which are the cycle 
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RESULTS 
Checker Result 
Figure Checker Simulation Result 
 

Figure5.1 shows the simulation result of 
checker module. The output for this module is 
ERROR register of 44 bit length, in which each 
bit represents various protocol  errors of AHB. 
For example when reset signal is high 
(HRESETn) then all the control signals should 
be at initial state otherwise they will produce an 
error. The protocol list is given in table. 
Corresponding to the error, bit of the error 
register will respond. 

 
 
 
 
 
 
 
 
 
 
 
 
Event Generator Result 
Figure Event Generation Simulation Result 
 
This module is responsible for producing the 

control signal for the tracer, which represents the 

start and stop point of the trace. 
Trace_In_Progreess is the output signal for this 
module. And this module also produces mode of 
trace on which basis the tracer is working. 
Figure5.2 shows the simulation result for the 
Event Generation module. 

 

 
 

Figure Abstraction Simulation Result 
 
Abstraction module takes the inputs from  the 

AHB bus and the Event Generation module. If 
divides the AHB signals into ADDRESS signals, 
DATA signals and control signals. It is also 
responsible for producing the output depends on 
the mode of operation. For example if the trace 
mode is in Full cycle signal (FC) then it produces 
the output for every clock cycle. If it is in Bus 
transaction mode first it encodes the PCS control 
signals and generates the output on transactions 
only. Figure5.3 shows the simulation result for 
ABSTRACTION module. 

 
CONCLUSION 
We have presented an on-chip bus tracer 

SYS-HMRBT for the development, integration, 
debugging, monitoring, and tuning of 
AHB-based SoC’s. It is attached to the on-chip 
AHB bus and is capable of capturing and 
compressing in 

real time the bus traces with five modes of 
resolution. These modes could be dynamically 
switched while tracing. The bus tracer also 
supports both directions of traces: pre-T trace 
(trace before the triggering event) and post-T 
trace  (trace after the triggering event). In 
addition, a graphical user interface, running on a 
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host PC, has been developed to configure the bus 
tracer and analyze the captured traces. With the 
aforementioned features, SYS-HMRBT supports  
a diverse range of design/debugging/ monitoring 
activities, including module development, chip 
integration, hardware/software integration and 
debugging, system behavior monitoring, system 
performance/power analysis and optimization, 
etc. The users are allowed to tradeoff between 
trace granularity and trace depth in order to make 
the most use of the on-chip trace memory or I/O 
pins. 
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